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Introduction
/

probable error: generally referred to as CEP. CEP is simply the bivariate analog

of the probable error of a single variable and measures the radius of a mean

centered circle which includes 50% of the bivariate probability mass. In the case

of circular normal errors where the error variances are the same in both directions, 7
CEP can be expressed in terms of the common standard deviation, and estimators are

easily formulated and compared. In the case of elliptical normal errors, CEP can-

not be expressed in closed form, and hence, estimators are less easily formulated.
The problem addressed herein is the comparison of CEP estimators for the elliptical

case based on some of the commonly used CEP approximations.

It will be instructive to first review the case of circular normal errors.
In general, it will be assumed that the errors in the X and Y directions are

independent with mean zero and variances ci and 03, respectively. Under the

. . 2 . . . . .
circular normal assumption, ol = 02 = ¢ and the bivariate distribution of

X Y
errors is given by
2.2 2
£.0Gy) =y @ X2
2o

- o < XY < ®, 9]

309




e
=

L
The distribution of R = (X* + Y2)? is easily derived and found to be

2,,.2
g () =L T/E s, (2)
g

This is the well known Rayleigh distribution with cumulative distribution

function

-r2/202
PR < 1) = Gc(r) =1 -¢e .

By definition, GC(CEP) = .5, and the solution of equation (3} yields the well-
known expression
1
cep = [-2an (.50)]% 0 = 1.17745 . (4)

Four estimators for CEP in the circular case were formulated and compared by

Moranda (1959).

Consider now the case of elliptical normal errors. Here the variances are

unequal, and the bivariate distribution of errors is given by

) 2 2
Fy) = gk o [ova?s wr0)f] Lo iny cu. ()
25,5y,

For this case, the distribution of the radial error R was derived by Chew and

Boyce (1961) and has form

2
- 2
ge(r) = = @7 1 (619 (6)
Xy
where
02 + oi . 02 - oi
a:.-L-—-s_‘ =..L=__j
(200 )2 {(20.0.)
Xy Xy
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and Io is the modified Bessel function of the first kind and zero order, i.e.,

1

~X cos 8
5 do.

Io(x) = e

o R e |

The cumulative distribution function for R is denoted by

Y
P(R < 1) = Gy(r) = { gp(t) dt, %)
(]

but it cannot be expressed in closed form. Hence, the radius of the 50% circle

for the elliptical case cannot be expressed by a simple formula as it was in the
circular case, One has to solve GE(CEP) = .5 by numerical methods or by referring
to tables prepared by Harter (1960), DiDonato and Jarnagin (1962), and others. To
avoid using these tables or numerical procedures for CEP evaluation, a number of
approximations have been developed over the years. Five of these approximations

have been chosen for examination. They are designated below as CEP; through CEP:

2 2\ %
CEP; = 1.1774 _Z.l (8)
CEP, = 1.1774 _7_2 (9)

CEP

lﬁ 0-2 + 0-2 1'5
3= (Z X\Z),.so/“> <L2—l> 19
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CEPy = .565 o + .612 Omin® omin/cmax > .25 (11)
= ,667 Tnax * . 206 Cnin’ omin/cmax < ,25

g

%- 2 '% of + o
Se-g))t (E5%)

CEP1 and CEP2 were taken from Groves (1961), CBP3 was established by Grubbs (1964),

CEPS

CEP, is a piece-wise linear combination of the standard deviations, and CEP, was
also established by Grubbs (1964) using a Wilson-Hilferty transformation of the
chi-square in CEPS. Plots of each approximation versus the true CEP as a function

/

of how well each performs. It is seen that CEP; deteriorates rapidly as we depart

are shown in Figures 1 through 5. These give a fairly good indication

o . /0
min max

from the circular case (for which CEP; degenerates to 1.17740), CEP, is reasonably
/

ratios, and CEP4 and CEP. appear good to a lesser extent for all ratios.

good if the ratio o is not less than about .2, CEP3 appears good for all

min’ “max

If these approximations were used only as approximations for assumed values
of the error variances (as one does in wargaming and round requirement studies),
then there would be no estimation problem. However, in many cases, weapons
analysts are using estimates of the variances in these approximations (based on
sample data) to form estimates of CEP. Hence, the problem now becomes an estima-
tion problem instead of an approximation problem. In particular, the problem
addressed in this paper is that of comparing the five estimators for CEP formed
by replacing the population variances in equations (8) through (12) with sample
variances Si =T Xg/n and Sﬁ = % Yg/n. (In these expressions, X, and Y, are the
recorded errors in the X and Y directions, respectively, for the ith impact and
n is the number of sample impacts.) These estimators will be referred to as

CEP, through CEP¢ in the discussion which follows.
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Methodology

Measures of comparison employed in this study were the mean squared error
(MSE), expected confidence interval length, and confidence interval confidence.
With regard to the former, the MSE of an estimator 6 for a parameter ¢ is defined

in the usual sense, i.c.,
. A \ -~ 2 - 2 A
MSE(0) = E(6 -0)° = V(p) + B” (8)

where D represents expectation, V represents variance and B represents bias, It
wis chosen because it accounts for bias as well as variance and all five estimators

are biased for CEP except in the degenerate circular case., With repard to the

sccond measure, it was chosen because it too accounts for bias as well as variance

but in the sensc of interval estimation vice point. These computations were baged
on approximate distributions of CEP estimators and did not provide intervals with
specified confidence in all cases. Hence, the third measure was included to

cstimate the true confidence.

The computation of these measures was straightforward but not simple due to
the complexity of the estimators. Recall that 1, 3 and 5 each involve radicals
of linear combinations of sample variances and estimators 2 and 4 involve linear

conbinations of sample standard deviations. Hence, the sampling distributions

were approximated. The approximations were achieved by matching the variance of

estimators 3 and S with the variance of the chi-square distribution and by match-

ing the variance of estimators 2 and 4 with the variance of the chi distribution.
fistimator 1 was simply anproximated by a chi-square with 2n degrees of freedom.
This distribution is exact only in the circular case and was included to show how
poorly it becomes when eccentricity of the distribution increases. The approxi-
mations arc shown in Figure 6 and are discussed in more detail in the next

paragraph.
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Figure 6 provides a summary of approximate distributions for each Cﬁpi
and defines several multiplicative factors, K.» eccentricity ¢ and degrees of
freedom v and v'. v* does not have a simple form and is described below.

Because estimators 3 and § are of the same general form, the distribution
of the squares of both was approximated by matching the variance of

Y Gy

L e (13)

(o, * o),)

with 2v', the variance of a chi-square with v' degrees of freedom. It was found

2 2
that v' = nv where v = (c + 1) . Expression (13) can be rewritten as
*‘?"=?f" Xp
C +
v' CEPf
o where i = 3 or 5 (¥4)

2 ¢+ 1
Gy
to conform to the expressions in Figure 6.
Estimators 2 and 4, representing linear combinations of the standard

deviations, were approximated by matching the variapce of a chi with v* degrees

of freedom with the variance of

+

m*% (o
R e (15)

2 -
VL - H ) Sy - (16)
and the variance of a chi with u* degrees of freedom is

v¥(1 - Hz(v*))
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_ x+1
where H(x) =\/—.?II;‘(__,(;2§_~.))

Upon equating the two, we find that v* satisfies

2
H(W) = ‘1 - (1 - HEmY) e
(n (1+c)

and can be obtained from a table of inverse solutions of the H fuaction,
The approximate distributions allow one to derive approximate mean squared
errors for the CEP, estimators which are given in Figure 7. The K, coefficients

are defined as before and Bias(CEPi) is defined as
B(CEP,) - True CEP, for i =1, 2, ..., 5.

In general, oy is a scale factor representing the maximum ¢ value; however, in
the examples given here oy is always equal to 1. Note that FBE(CEPZ) and.NSE(CﬁP4)
can be expressed in exact rather than approximate form.

Since a point estimate may not provide adequate information, approximate
95% confidence intervals were constructed for each estimator using the distributions
discussed above, The approximate 100(1-a)% confidence limits for CEP are given
by

’”

CEP; CEP;

I_ (Xsi,lhu/Z/vi)g ’ (*Ei,a/z/“i

)

where CEPi is the ith estimator and v, equals the degrees of freedom associated
with CEPi. Expected confidence interval widths can then be computed and used as
measures of comparison between estimators. Clearly, if one could compute exact
95% confidence intervals, comparison of interval widths would be straightforward.
However, only approximate intervals can be obtained and the confidence associated

with each interval must be computed before a complete evaluation can be made.
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Confidence was estimated using 10,000 Monte Carlo replicates for samples
of size 5, 10 and 20 and measuring the percentage of time the true CEP fell
within the interval. Confidence and expected confidence interval widths were

then jointly examined.

Results

The object of this study was to examine and evaluate the behavior of
several candidate CEP estimators over a wide range of conditions. Sample sizes
ranged from 5 to 400 and eccentricities ranged from ¢ = 1, the circular case to
c = 20, a highly elliptical case. Extreme values of the sample size and
eccentricity may be infrequently encountered but were included for completeness.
Clearly, an estimator behaving poorly under circumstances unlikely to be observed
should not be disregarded as a viable candidate,

Prior to determining approximate distributions and mean squared error
(MSE) approximations for the estimators, a Monte Carlo simulation was developed
for computing the variance, bias, average squared error (ASE) and standard error
for each estimator at each of three sample sizes (n = 5, 10, 20). The simulated
ASE's were used as a check against MSE approximations which were subsequently
computed.

Upon comparing the simulated ASE's against results of the MSE approximations
for sample sizes 5, 10, and 20, it became evident that MSE approximations were
inadequate for estimators 3 and 5. In fact, in the mid-range of the eccentricity,
¢, the MSE for 3 and 5 differed from the simulated values of ASE by as much as
three times the standard error. For this reason, the simulated ASE values are
presented in Figure 8 while the approximate MSE values, found suitable for
larger sample sizes, are shown in Figure 9,

Despite some fluctuation at ¢ = .05, Figures 8 and 9 show estimators 2

through $ producing fairly close results. As the sample size increased,
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estimator 4 exhibited the smallest mean squared error and appeared to be the
most satisfactory point estimator.
Figures 10 and 11 contain expected confidence interval width and confidence

interval confidence, respectively. If the computation of exact 95% confidence

intervals were possible, a straightforward selection of the estimator producing
the narrowest width could be made. However, the approximate confidence intervals
have varying levels of confidence associated with them, all of which under-
estimate or overestimate the desired 95% level. It appears that the wider lengths
are associated with higher confidence and the narrower widths with the lower

confidences so that a true comparison is not really possible. However, it is

evident that estimators 2 through 5 do not distinguish themselves as being far
superior or grossly inferior to one another. This is essentially the same result
obtained from the MSE comparisons.

In sumary, unless ¢ is.very small, estimators 2 through 5 produce
reasonably close results. If confidence intervals are not desired, estimator 4
would be an acceptable choice. Otherwise, estimator 3 is recommended due to

ease of confidence interval computability.

317




1 2and1g

0
.

,’.no

-3

b\cme f'o)

”0 A
’

d re

v-m H.M

%

[4

N..b + Nn,b

yLLtL = 'd39

Pt IURRPS .

-0

.l‘.o

X1

318



ST:
3INST

xow O/utw O

2] 80 ] 40 90 s0 90 £EQ 0 3]
1 1 i 1

i b & " i N — L e Py

z__{ 11y = %4

lso

-0

all

-7

xow Of7 ¢32

319




¢ 2ans5Tg

xow o /uiw D
6y 0 19 70 $0 »0 £ o 10 00
y i I i 1 A A . . 'y qo
b
-0

i

[/

Ao 4 20

M w\_&s..ﬂxu - t439
1

j—.—
S

ww O/¢ 430

320




v

2In3Tg

-3

ro 00

* "ogoz + ™o 199

o219 + ™o ggg

did

80

Fol

11

Ly

xow O/d433 INyL

321




s

§ 2aNBT]
oW ofuiw O
" o Fy ] 4] £ 1] *»0 £0 To ro o0
1 i - A 2 - F . P ; A i ) - o 'S
£0
90
s

L0

nd

4T

-

[4

- _ma; Zl = °d19
y Nh5+Nb w\m—.w A n\-g

xow O/¢ d3)

322

e e




Approximate Distributions of Estimators

A 2
2n CEP
1) e - ¥
2 K (c +1)
v K\
W cﬁpg )

@ (ﬁ) ~ Xow

oy K &2
v! CEP% 2
B e K
o2 ¢2 (c +l)
y 3 Z
¥ C{’.Pi 2
4) - ~ Xgr
g (g1+gZC)
~ 2
) v CEP L

1 3
T 2.|\%
2 .42
c=0/o, 1 Vv =(C+D vl =nv
Y c +l

gy = 565 ) g, = 612  when c 2 .25

F

g = 667 87 206  when ¢ < .25

Figure 6
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MEAN SQUARED ERRORS

MSE(CEP,) % o2 K? (E5-Y)[1-7 (2n)] + [Bias (cEP,) ]’

MSE (CEP,) = o2 K? (S U [1-H’ (n)] + [Bias cEp,) |

y l

MSE (CEP,) & o7 K] (S3)[1-H2(v") + [ Bias (cEP,) |

2 2
V= ny p = (£
ch+

MSE (CEP,) = o (g2 + ¢2 ¢2)[1-H’(n) | + [Bias leiPdJ:’
MSE (CEP,) & o7 K2 (E200) [1-w2 ()| + [Bias (cip, )|

" Exact




AVERAGE SQUARED ERROR

N=5
¢ ASE1  ASE2 ASE 3 ASE4  ASES SE.
1.0 068 069 070 069 .069 .003
15 056 053 053 053 053 .002
50 056 042 041 041 042 002
35 063 037 .038 038 039 002
20 073 035 .039 040 041 002
.05 079 041 044 043 045 .002
N=10
c ASE 1 ASE 2 ASE 3 ASE 4 ASE 5 SE.
1.0 034 035 035 035 035 002
5 029 027 027 027 027 002
50 031 021 021 021 021 001
35 .038 019 019 019 020 .001
20 048 018 .020 021 021 001
05 053 022 022 022 023 .001
§1 N=20
? C ASE1  ASE2  ASE3 ASE4  ASES SE
1.0 017 07 017 017 017 001
5 014 013 013 013 i3 001
50 017 o 010 010 010 001
35 024 010 .009 009 010 001
20 034 009 010 on o1 .001 |
05 .039 013 oM on 012 .001 !
Figure 8
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| MEAN SQUARED ERROR

N =50
C MSE 1 MSE 2 MSE 3 MSE 4 MSE §
1.0 0069 0069 0069 0069 0070
15 0055 0054 0057 0054 0057
50 0077 0044 0051 0042 0052
35 0143 0041 0049 0037 0050
20 0235 0036 0047 0036 0050
05 0275 0072 0045 0042 0048

N =100
c MSE 1 MSE 2 MSE 3 MSE 4 MSE 5
1.0 0035 0035 0035 0035 0035
15 0029 0027 0028 0027 0029
50 0057 0023 0026 0021 0026
35 0126 0022 0024 0019 0026
20 0220 0018 0023 0018 0026
05 0261 0053 0023 0021 0025

N = 400
c MSE 1 MSE 2 MSE 3 MSE 4 MSE 5
1.0 0009 .0009 0009 0009 0009
15 0009 0007 0007 0007 0007
50 0042 0007 0007 .0005 0007
35 0113 .0008 0006 0005 0007
20 0209 0005 .0006 0005 .0008
05 0251 0038 0006 0005 0007

Figure 9
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1.0
15
90
39
.20
.05

CONFIDENCE INTERVAL LENGTHS

CL1

1.21

1.07
950
897
856
841

CL1

192
.698
522
9817
564
953

CL1

931
415
423
.400
.384
378

CL2

1160
1.028
923
889
816
912

CL 2
116
685
614
986
913
579

N
ClL 2
533
A12
A
401

.388
387

=5

= 20

CL3
1.305
1175
1118
1.129
1.149
1.176

CL 3
817
135
697
693
694
695

CL3

945
492
465
460
455
453

Figure 10
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CL 4

1.145
1.014
918
917
985
1.054

CL 4

.168
676
601
986
636
662

CL4

931
467
A1
393
429
441

CLS
823
141

.105
102
.106
107

CLS

548
496
470
.466
462
461




SIMULATED CONFIDENCE LEVELS
N=5
c PROB!  PROB2  PROB3  PROB4  PROB 5
1.0 950 947 963 946 963
15 941 947 965 945 965
.50 .894 941 968 944 967
35 830 9317 .963 939 .961
.20 153 932 952 923 .950
.05 114 930 .950 936 948
N=10
c PROB 1 PROB 2 PROB 3 PROB 4 PROB 5
1.0 947 945 995 944 .955
75 935 944 958 943 959
.90 876 .941 967 943 966
.35 189 939 967 941 .965
.20 .689 939 .959 .93 955
05 640 931 951 943 948
N =20
C PROB 1 PROB 2 PROB 3 PROE 4 PROB 5
1.0 952 952 956 951 .956
15 938 951 960 951 960
.50 858 945 970 .948 .969
.35 124 .942 970 947 968
20 567 .946 .961 937 955
.05 .06 912 .950 946 946
Figure 11 /:_/_/.:__.,..-——"'
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